Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jin-Long Wu

Laboratory of Asymmetric Catalysis and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, People's
Republic of China
Correspondence e-mail: wyz@zju.edu.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.033$
$w R$ factor $=0.061$
Data-to-parameter ratio $=21.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
(aR,1R,2S,5R)-5-Methyl-2-(1-methyl-1-phenylethyl)cyclohexyl (4-tert-butylcyclohexylidene)acetate

In the molecule of the title compound, $\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{O}_{2}$, the two cyclohexane rings adopt chair conformations. The olefinic bond and carbonyl group are approximately coplanar.

Comment

The Wittig reaction of ylides with aldehydes or ketones is an olefination method extensively used in organic synthesis (Maryanoff \& Reitz, 1989; Kolodiazhnyi, 1999; Hoffmann, 2001; Rein \& Pedersen, 2002). The reactions of 4 -substituted cyclohexanone with chiral Wittig or Hornor-WadsworthEmmoons (HWE) reagents are typical asymmetric Wittig reactions (Tomoskozi \& Janzso, 1962; Rein \& Reiser, 1996; Furuta \& Iwamura, 1994).

(I)

In the molecule of the title compound, (I) (Fig. 1), the bond lengths and angles are within normal ranges (Allen et al., 1987).

Rings A (C1-C6) and C (C19-C24), with total puckering amplitudes, Q_{T}, of 0.564 (3) and 0.560 (4) \AA, respectively, have chair conformations $\left[\varphi=160.12(2)^{\circ}\right.$ and $\theta=4.13(3)^{\circ}$, and $\varphi=$ $-144.71(1.7)^{\circ}$ and $\left.\theta=0.68(3)^{\circ}\right]$ (Cremer \& Pople, 1975). Ring $B(\mathrm{C} 10-\mathrm{C} 15)$ is, of course, planar. The $\mathrm{O} 2 / \mathrm{C} 17-\mathrm{C} 19$ unit is planar, with a maximum deviation of 0.0211 (3) $\AA(\mathrm{C} 17)$ from the least-squares plane.

As can be seen from the packing diagram (Fig. 2), the molecules are extended along the c axis and stacked along the a axis. Dipole-dipole and van der Waals interactions are effective in the molecular packing.

Experimental

A solution of n-BuLi in hexane ($0.39 \mathrm{ml}, 0.624 \mathrm{mmol}$) was added to a suspension of $(1 R, 2 S, 5 R)$-[5-methyl-2-(1-methyl-1-phenylethylcyclohexyloxycarbonylmethyl]triphenylarsonium bromide $(411.0 \mathrm{mg}$, 0.625 mmol) in tetrahydrofuran (THF, 5 ml) and stirred for 30 min at 195 K under N_{2}; a solution of 4-tert-cyclohexanone (77.1 mg ,

Received 14 June 2006
Accepted 14 June 2006
0.50 mmol) in THF (1 ml) was then added. The temperature was raised to 258 K , and stirring continued for an additional 91 h . The reaction mixture was quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (5 ml) and extracted with ethyl acetate ($3 \times 10 \mathrm{ml}$); the combined organic layer was washed with brine, dried over anhydrous MgSO_{4} and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel, eluting with EtOAc in hexane (5:95) to afford (I) (yield 69\%). The diastereomeric ratio of (I) was determined to to be $86: 14$ by ${ }^{1} \mathrm{H}$ NMR on a 600 MHz instrument (Dai et al., 1997). It was recrystallized from hexane, giving colorless crystals suitable for X-ray diffraction analysis.

Crystal data

$\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{O}_{2}$
$M_{r}=410.64$
Tetragonal, $P 4_{1}$
$a=11.909$ (4) \AA
$c=18.083$ (4) \AA
$V=2564.5(12) \AA^{3}$
$Z=4$

Data collection

Rigaku R-AXIS RAPID-S
diffractometer
ω scans
Absorption correction: none
24932 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.061$
$S=1.00$
5828 reflections
273 parameters
H -atom parameters constrained $w=1 /\left[0.7900 \sigma\left(F_{\mathrm{o}}{ }^{2}\right)\right] /\left(4 F_{\mathrm{o}}{ }^{2}\right)$
$(\Delta / \sigma)_{\max }<0.001$
$D_{x}=1.063 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.06 \mathrm{~mm}^{-1}$
$T=298(1) \mathrm{K}$
Block, colorless
$0.42 \times 0.39 \times 0.36 \mathrm{~mm}$

5828 independent reflections 2994 reflections with $F^{2}>2 \sigma\left(F^{2}\right)$ $R_{\text {int }}=0.040$
$\theta_{\text {max }}=27.5^{\circ}$
$\Delta \rho_{\max }=0.13 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.15 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.15 \mathrm{e}^{-3}$
Extinction correction: Larson (1970)

Extinction coefficient: 768 (34)
Absolute structure: Flack (1983), with 671 Friedel pairs
Flack parameter: 0.46 (8)

The title compound was synthesized from 4-tert-butylcyclohexanone and chiral ($1 R, 2 S, 5 R$)-5-methyl-2-(1-methyl-1-phenylethyl)cyclohexyl dimethoxyphosponylacetate but only a 36:64 diastereomer mixture was obtained (Furuta et al., 1994). It has been found (Dai et al., 1997) that the chiral arsonium ylide derived from $(1 R, 2 S, 5 R)$ -[5-methyl-2-(1-methyl-1-phenylethyl)cyclohexyloxycarbonylmethyl]triphenylarsonium bromide could apparently improve the asymmetric induction and diastereoselectivity up to 86:14 was achieved. The absolute stereochemistry was assigned as $a R$ by chemical correlation with 4-tert-butylcyclohexylideneethanol. H atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}=0.93,0.980 .97$ and $0.96 \AA$ for aromatic, methine, methylene and methyl H atoms, respectively, and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CrystalStructure.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Figure 1
An ORTEP-3 (Farrugia, 1997) drawing of the molecular structure with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
A packing diagram of (I).

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. \& Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Dai, W.-M., Wu, J. \& Huang, X. (1997). Tetrahedron Asymmetry, 8, 1979-1982.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Furuta, T. \& Iwamura, M. (1994). J. Chem. Soc. Chem. Commun. pp. 21672168.

Hoffmann, R. W. (2001). Angew. Chem. Int. Ed. 40, 1411-1416.
Kolodiazhnyi, O. I. (1999). Phosphorus Ylides: Chemistry and Application in Organic Synthesis. New York: Wiley-VCH.
Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, pp. 291-294. Copenhagen: Munksgaard.
Maryanoff, B. E. \& Reitz, A. B. (1989). Chem. Rev. 89, 863-927.
Rein, T. \& Pedersen, T. M. (1996). Synthesis, pp. 579-594.
Rein, T. \& Reiser, O. (1996). Acta Chem. Scand. 50, 369-379.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, 3-9-12 Akishima, Tokyo 196-8666, Japan.
Rigaku/MSC (2004). CrystalStructure. Version 3.60. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Tomoskozi, I. \& Janzso, G. (1962). Chem. Ind. pp. 2085-2086.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

